Archives de catégorie : Hilscher

A4A : Raspberry Pi 3 / netHAT / PROFINET IO

Bonjour,

Je disais donc dans mon dernier article qu’il fallait que je vous fasse une petite démonstration de l’utilisation du netHAT Hilscher avec un Raspberry Pi 3 et « Ada for Automation ».

Voilà donc une copie d’écran montrant l’application piano connectée, via le netHAT configuré en PROFINET IO Device, à un automate SIEMENS S7 1500-PN PROFINET IO Contrôleur :

Raspberry Pi 3 Ada for Automation netHAT
Raspberry Pi 3 Ada for Automation netHAT

On reconnait dans cette vue de TIA Portal les valeurs d’E/S affichées dans la vue ci-dessus, les bits de poids faible sont à gauche dans la vue du piano (b0 .. b7) :

netHAT TIA Portal Visu
netHAT TIA Portal Visu

La vue d’état cifX montre donc l’état du netHAT puisque celui-ci partage avec celle-ci, comme la plupart des produits Hilscher, l’API cifX, la Dual Port Memory, les piles de protocoles et l’OS.

La seule subtilité que j’ai rencontrée, c’est que la version du pilote Linux livrée avec le netHAT est plus récente que celle que j’utilisais jusqu’alors (la V1.1.0.0) et que l’architecture en a été revue.
En substance, un plugin permet maintenant de gérer la connexion via SPI et il n’est plus nécessaire de le gérer côté application. Le netHAT est directement vu comme une cifX.

netHAT cifX Status
netHAT cifX Status

Bien sûr, tout baigne côté automate aussi !

netHAT TIA Portal Network
netHAT TIA Portal Network

Une petite formation ? 😉

Cordialement,
Stéphane

Raspberry Pi 3 / SenseHAT / netHAT / netPi

Bonjour,

Je cherchais pour mes expériences une solution qui soit ludique, et aussi accessible à tout un chacun, et mes tribulations m’ont conduit à sélectionner un combo Raspberry Pi 3 + SenseHAT.

Hilscher France a donc fait l’acquisition de ces éléments chez KUBII :

Starter Kit Officiel Pi3
https://www.kubii.fr/fr/kits-raspberry-pi/1637-kit-demarrage-raspberry-pi3-3272496004207.html

Raspberry Pi Sense Hat
https://www.kubii.fr/fr/cartes-extension-cameras-raspberry-pi/1081-raspberry-pi-sense-hat-640522710799.html

Pourquoi donc un tel investissement me direz vous ?

Sans doute parce que depuis quelques temps cette plateforme économique et performante permet d’imaginer tout un tas d’utilisations dans ce qu’il est convenu d’appeler l’IoT, l’IIoT, Industry 4.0, etc…

Aussi, à l’instar de certains confrères, la société Hilscher a développé certains produits autour de cette plateforme comme le netHAT, le netPi et le Edge Gateway « Connect » :
https://www.netiot.com/interface/nethat/
https://www.netiot.com/netpi/industrial-raspberry-pi-3/
https://www.netiot.com/edge/

Hilscher innove en testant le canal de vente Amazon et l’on peut y acheter le netHAT et le netPi :
https://www.amazon.fr/Hilscher-NXHAT52-RTE-nethat-52-de-RTE/dp/B01MFH0FP9
https://www.amazon.fr/Industrial-Raspberry-Industry-Communication-4×1-2Ghz-Real-Time-Ethernet/dp/B0756XD2CN

Pour ces produits, Hilscher France n’assure pas de support.
Cependant, l’on peut vous proposer une formation !

Le netHAT est fourni avec un pilote Linux compilé, des firmwares en version limitée à 32 octets d’E/S pour EtherCAT, Ethernet/IP et PROFINET IO Device et bien sûr de la documentation.

Le tout s’installe sans encombre sur la Raspbian et ça tombe en marche comme sur le plan.

Vous pouvez donc vous familiariser avec la technologie Hilscher pour une quarantaine d’euros, ce qui est modique vous en conviendrez aisément.

Bien sûr, « Ada for Automation » peut tout à fait être utilisé avec le netHAT. J’y reviendrai bien sûr.

Avec un Raspberry Pi + un netHAT, on peut aussi tester le concept netPi et développer des applications qui tourneront sur le netPi sans modification.

Bref, je souhaitais monter une manipulation avec un Rasberry Pi 3, un SenseHAT pour des capteurs pas chers et un netHAT pour connecter ce bijou de technologie à votre automate préféré.

En fait, le SenseHAT et le netHAT ne peuvent pas se monter l’un sur l’autre comme on pourrait le penser de prime abord.

Je pensais développer un binding Ada pour le SenseHAT mais ce n’est pas si simple.
Le langage choisi par l’équipe Raspberry est plutôt le Python et la plupart des bibliothèques fournies pour les « HAT » sont en Python.
La bibliothèque disponible pour le SenseHAT est donc en Python aussi et utilise d’une part une bibliothèque en C++ qui gère nombre de capteurs et d’autre part le framebuffer pour les LEDs et un IO device pour le joystick.

Monsieur Phil Munts, que je remercie, m’a bien fait part de sa librairie :
http://git.munts.com/libsimpleio/ada/

Mais je voulais quelque chose de super vite fait et j’ai penché pour une solution mettant en œuvre un framework Modbus développé par un collègue, Monsieur Luc JEAN, que je remercie chaleureusement :
https://github.com/ljean/modbus-tk

Pourquoi donc ? « Ada for Automation » disposant de la fonctionnalité Modbus TCP Client et le framework permettant de réaliser très simplement un serveur Modbus TCP, il suffisait donc de raccrocher les données des capteurs dans les registres du serveur.

J’ai utilisé également ce bout de code qui m’a bien aidé, je remercie aussi son auteur :
https://frank-deng.github.io/python-kbhit.en.html

Le SenseHAT dispose d’une application de simulation avec interface graphique et il est possible d’utiliser celle-ci en lieu et place du matériel tel que dans l’exemple suivant.

SenseHAT Simu GUI
SenseHAT Simu GUI

On y démarre depuis un terminal :

python 3 sense-omb.py
python 3 sense-omb.py

Et on teste par exemple avec Modbus Poll :

Modbus Poll Example
Modbus Poll Example

En Python, c’est une vingtaine de lignes de code pour remonter température, pression, hygrométrie et cap :

#!/usr/bin/env python
# -*- coding: utf_8 -*-
"""
 Modbus TestKit: Implementation of Modbus protocol in python

 (C)2009 - Luc Jean - luc.jean@gmail.com
 (C)2009 - Apidev - http://www.apidev.fr

 This is distributed under GNU LGPL license, see license.txt
"""


import sys
import struct

import modbus_tk
import modbus_tk.defines as cst
from modbus_tk import modbus_tcp

from sense_emu import SenseHat

import kbhit, time;

sense = SenseHat()

def main():
    """main"""

    kbhit.init();
    running = True;

    logger = modbus_tk.utils.create_logger(name="console", record_format="%(message)s")

    try:
        #Create the server
        server = modbus_tcp.TcpServer(port=1502)
        logger.info("running...")
        logger.info("enter 'q' for closing the server")

        server.start()

        slave_1 = server.add_slave(1)
        slave_1.add_block('0', cst.HOLDING_REGISTERS, 0, 100)

        while running:
            if kbhit.kbhit():
                ch = kbhit.getch();
                if 'q' == ch:
                    running = False;

            slave_1.set_values('0', 0, struct.unpack('>HH', struct.pack('>f', sense.temp)))
            slave_1.set_values('0', 2, struct.unpack('>HH', struct.pack('>f', sense.pressure)))
            slave_1.set_values('0', 4, struct.unpack('>HH', struct.pack('>f', sense.humidity)))
            slave_1.set_values('0', 6, struct.unpack('>HH', struct.pack('>f', sense.compass)))

            time.sleep(0.1);

    finally:
        server.stop()
        kbhit.restore();

if __name__ == "__main__":
    main()

C’est naturellement pas très temps réel mais c’est très bien pour mon cas d’école.

Et en plus, on peut facilement imaginer de reproduire ce schéma avec d’autres HATs comme le « Automation HAT » par exemple :
https://shop.pimoroni.com/products/automation-hat

Vous pouvez donc remonter les données du SenseHAT vers votre automate préféré disposant d’une connectivité Modbus TCP Client.
Bon, en travaillant un peu, ça doit fonctionner dans les deux sens, hein !

Quid du netHAT ? Si on utilise l’application de simulation SenseHAT on peut bien sûr le mettre sur le même Raspberry Pi et se connecter en local.
Si l’on souhaite de vraies données physiques, il faudra l’installer sur un autre Raspberry Pi, et le faire communiquer avec le premier, toujours en Modbus TCP.
C’est trivial avec « Ada for Automation » et je vous le montrerai ce tantôt.

Cordialement,
Stéphane

Un portail de démo pour « Ada for Automation »

Bonjour,

Il a déjà été question dans ces pages de « Ada for Automation » dans le nuage et le site consacré à Gnoga montre un usage du serveur Apache configuré comme frontal (proxy) de démonstration.

J’ai donc marché dans les pas de Gnoga et créé également un portail de démonstration pour « Ada for Automation ».

Ainsi, ce portail présente quelques applications mettant en œuvre bien sûr les technologies web déjà mentionnées, du Modbus TCP en Client / Serveur grâce à libmodbus, et du PROFINET IO Contrôleur et Équipement (Device).

L’on pourra donc interagir avec :

  • une application basique Modbus TCP en Client / Serveur supervisant et contrôlant un « piano » Modbus TCP Serveur,
  • l’application historique App1, Modbus TCP en Client / Serveur, supervisant et contrôlant une application Modbus TCP Serveur simulant la partie opérante,
  • une application basique pilotant en PROFINET le fameux « piano ».

Les deux premières démonstrations ont lieu entièrement dans le cloud, comme évoqué dans les articles précédents.

Pour la troisième démonstration où l’on met en œuvre l’API Hilscher cifX, on utilise un PC industriel sous Debian Linux dans lequel une carte cifX est configurée en contrôleur PROFINET IO et un Raspberry Pi (Raspbian) connecté via une liaison SPI à une carte d’évaluation netRAPID configurée en PROFINET IO Device.

On a donc une application « Ada for Automation » sur le PC au-dessus de la cifX et une autre sur le Raspberry Pi au-dessus du netRAPID, communiquant via la même API.
Ne manquez pas de visiter depuis le menu de l’application les pages d’état où l’on reconnaîtra en particulier les informations du « Common Status » pour l’API cifX.

Cette POC (Proof Of Concept) ne demande qu’à être étoffée.
Faute de matériel plus divers, je pense par exemple à une démonstration tout aussi peu palpable avec l’implémentation Hilscher de PROFIdrive.
Il vous serait ainsi offert de piloter un variateur virtuel dans le cloud, ce qui, admettez, est un peu perché.

Il serait tout aussi possible d’envisager une démonstration avec l’une des nombreuses autres technologies de bus de terrain supportées par Hilscher.

Ouvert à toute forme de collaboration, n’hésitez pas à me faire part de vos besoins si vous souhaitez une manipulation avec un matériel quelconque de votre fourniture.

Cordialement,
Stéphane

A4A : Exemple d’application 6 : Modbus TCP Client / Serveur + deux canaux Hilscher

Bonjour,

Comme je l’indiquais récemment l’application « app6_gui » offre :

  • un serveur Modbus TCP pour y connecter par exemple un SCADA du marché,
  • une fonction IO Scanning avec une tâche client Modbus TCP par serveur d’E/S,
  • deux canaux cifX Hilscher, pour gérer deux cartes, par exemple une PROFIBUS DP Maitre et une EtherCAT Maitre, ou pour gérer une carte à deux canaux comme par exemple un PROFIBUS DP Maitre et un CANopen Maitre,
  • une interface graphique avec GtkAda, permettant de consulter l’état des communications et de l’application et de démarrer ou arrêter les programmes utilisateur,
  • l’intégration du « cifX TCP Server » permettant la configuration et le diagnostic des cartes par SYCON.net via une connexion TCP/IP.

Je voulais faire un article à part pour cette application, avec des images. J’ai donc monté la manipulation suivante :

Manip-2016-01-08

On a donc un PC, sous Debian Jessie et un noyau Linux 64 bit standard, avec deux cartes Hilscher PCI, une cifX 50-DP configurée en Maître PROFIBUS DP et une cifX 50-RE configurée en Maître EtherCAT :

PC+2cifX50

Comme Esclave PROFIBUS DP j’ai une carte Hilscher CB-AB32-DPS, un « piano » avec deux octets en entrée et autant en sortie qui permet de monter une manipulation en deux secondes et demie :

CB-AB32-DPS

Pour EtherCAT, j’ai également un « piano », le NXIO 500-RE, qui reçoit sa fonctionnalité en insérant la carte MMC qui convient, ici EtherCAT Esclave, avec toujours deux octets d’E/S :

NXIO-500-RE

Le client Modbus TCP qui interroge le serveur de l’application 6 est Modbus Poll dont j’ai déjà fait mention il y a longtemps.

Quant au client Modbus TCP, ce que certains appellent IO Scanning, il est configuré pour exécuter deux requêtes sur un serveur d’un genre particulier sur lequel je reviendrai plus tard.

Je vous épargne la trace laissée par l’application dans le terminal depuis lequel elle est lancée, qui est certes informative, voire même didactique, mais un peu indigeste.

La fenêtre principale s’ouvre et l’on y trouve les onglets suivants.

La vue « Identité », (remarquez la version !) :

A4A-App6-Identity

La vue « Etat général » en deux bouts :

A4A-App6-GeneralStatus1

A4A-App6-GeneralStatus2

On notera la présence des informations d’état des deux tâches « Fieldbus ».

On trouve ensuite la vue d’état du serveur Modbus TCP qui affiche les compteurs de requêtes, et bien évidemment celui qui bouge est celui de la fonction 3 configurée côté Modbus Poll :

A4A-App6-ModbusTCPServer

La vue « Client Modbus TCP » affiche les informations d’état concernant les deux requêtes configurées pour le serveur secret pour le moment, le second client étant désactivé :

A4A-App6-ModbusTCPClients

Notez que lorsque l’on rajoute des requêtes au niveau de la configuration des clients, la vue d’état est bien sûr adaptée automatiquement.

Puis viennent les deux vues d’état des canaux Hilscher cifX.

L’un est donc PROFIBUS DP Maître :

A4A-App6-ProfibusDPMaster

Et l’autre est EtherCAT Maître :

A4A-App6-EtherCATMaster

Le programme utilisateur à l’œuvre dans les trois tâches est très sensiblement identique :

   procedure Process_IO is

      Elapsed_TON_1 : Ada.Real_Time.Time_Span;

   begin

      if First_Cycle then

         Output_Byte := Pattern_Byte;

         First_Cycle := False;

      end if;

      Tempo_TON_1.Cyclic (Start   => not TON_1_Q,
                          Preset  => Ada.Real_Time.Milliseconds (500),
                          Elapsed => Elapsed_TON_1,
                          Q       => TON_1_Q);

      if TON_1_Q then

         case Cmd_Byte is

         when 0 =>
            Output_Byte := ROR (Value => Output_Byte, Amount => 1);

         when 1 =>
            Output_Byte := ROL (Value => Output_Byte, Amount => 1);

         when others => Output_Byte := Pattern_Byte;

         end case;

      end if;

   end Process_IO;

On trouve aussi dans « Ada for Automation » une application exemple 5, « app5 », identique à « app6 » mais qui ne gère elle qu’un seul canal Hilscher cifX.

Mais quel est donc ce serveur Modbus TCP secret dont je vous entretiens depuis le début ?
La NXIO 500-RE ne pourrait-elle faire l’affaire avec une MMC ad hoc ? Sans doute, mais pour des raisons qui m’échappent ce firmware n’existe pas…

Aussi, je me suis dit que je n’avais qu’à utiliser le « kernel 0 », issu de « app1simu », et qui fournit un serveur Modbus TCP.
Oui mais, et les boutons et LEDs ? GtkAda aurait bien sûr pu convenir mais comme je jouais avec Gnoga…

Taa taan ! Voilà un « piano » piloté depuis le navigateur !

A4A-App6-A4A-Piano-Local

Comme c’est du SVG, donc du vectoriel, même depuis un mobile ça se pilote.

Et en plus l’application supporte les connexions multiples ! On peut jouer à plusieurs ! J’adore…
Promis, dès que mon code est un peu plus propre je l’envoie sur le dépôt.

Cordialement,
Stéphane

A4A : Applications et Noyaux

Bonjour,

Le framework « Ada for Automation » est fourni avec un certain nombre d’applications exemples, simple applications consoles ou avec interface graphique en GtkAda, et très bientôt je l’espère avec interface web grâce à Gnoga, un autre framework que je vous avais présenté très brièvement ici, et avec lequel je m’instruis beaucoup tout en m’amusant.

Ainsi par exemple le projet de base A4A est proposé en version console, dont le fichier projet est « a4a.gpr », et en version interface graphique avec « a4a_gui.gpr ».
Cette application est la plus simple possible et joue avec les deux octets d’entrée et sortie à sa disposition, ne mettant en œuvre que des fonctions de rotation et d’affectation.

Ce projet repose sur un noyau, partagé par les deux versions, qui gère le programme utilisateur, un serveur Modbus TCP et des clients Modbus TCP, un pour chaque serveur d’E/S.
La tâche principale collabore avec une tâche périodique annexe via la nouvelle DPM générique dont il a été question précédemment, chacune des tâches disposant d’un programme utilisateur à exécuter à l’état RUN.
Le serveur Modbus TCP comme les clients échangent leurs données avec la tâche principale également via des DPM spécifiques dont le rôle est d’assurer la cohérence des données échangées.

Via le mécanisme d’extension des projets supporté par la suite d’outils fournis par AdaCore, on peut construire des projets héritant des fichiers du projet parent et ajoutant de nouveaux fichiers ou en les substituant s’ils portent le même nom.

C’est ce mécanisme qui est utilisé par exemple avec l’application 1 présentée ici, et encore ici.

Aussi, comme cette application hérite de tout A4A, son dossier source ne contient que ce qui lui est propre, son identification, sa configuration et le programme utilisateur.

Pour cette application 1, ne disposant pas de la partie opérative on a développé une application de simulation, nommée « app1simu ».
Cette application ne nécessitant que la fonction serveur Modbus TCP on a créé un nouveau noyau issu du noyau de A4A auquel on a ôté la gestion des clients Modbus TCP.
Ce noyau logeait dans le dossier de l’application « app1simu » puisqu’il lui était spécifique.

Il en fut de même pour l’application 2 qui met en œuvre une carte Hilscher cifX en lieu et place des clients Modbus TCP.

Et encore de même avec l’application 3 qui remplace les clients Modbus TCP par un maitre Modbus RTU.

Le problème dans cette situation c’est que pour réutiliser un noyau de « app1simu », de « app2 » ou de « app3 », il eu fallut hériter de ces projets ou lister les sources que l’on souhaitait réutiliser, c’est possible, ou pire dupliquer les sources, beurk… Bref, ce n’était pas satisfaisant d’autant que je comptais multiplier les noyaux… On multiplie ce qu’on peut.

J’ai donc réorganisé le framework de sorte que les noyaux se retrouvent dans leurs propres dossiers.
Piloté par une variable externe ou un scénario depuis GPS, le dossier sélectionné est ajouté au projet en cours de traitement.

Ainsi le noyau de « app1simu » est maintenant le « kernel0 », celui de A4A est le « kernel1 », celui de « app3 » est devenu « kernel2″…

C’est beau et ça fonctionne à peu près.
La variable est définie dans un fichier de projet partagé par les autres fichiers de projets, le projet « shared.gpr », et reçoit une valeur initiale par défaut qui est « kernel1 » si elle n’est pas définie par ailleurs.
Attention cependant de laisser GPS terminer ses opérations de mise à jour des références croisées avant de changer de noyau au moyen de la liste déroulante du scénario sous peine de corruption de sa base de données, du moins avec la version Debian.
Ce n’est pas très grave puisqu’il suffit de supprimer celle-ci pour qu’elle soit reconstituée mais c’est un peu pénible.

...
   type Kernel_Type is
      ("kernel0",   --  Modbus TCP Server
       "kernel1",   --  Modbus TCP Server + Modbus TCP IO Scanning
       "kernel2",   --  Modbus TCP Server + Modbus RTU IO Scanning
       "kernel3",   --  Modbus TCP Server + one Hilscher cifX channel
       "kernel4",   --  Modbus TCP Server + Modbus TCP IO Scanning
                    --  + one Hilscher cifX channel
       "kernel5"    --  Modbus TCP Server + Modbus TCP IO Scanning
      );            --  + two Hilscher cifX channels

   Kernel : Kernel_Type := external ("Kernel", "kernel1");
...

Et l’on voit que le noyau de « app2 » est devenu le « kernel3 », que le « kernel4 » fusionne le « kernel1 » et le « kernel3 » et que le « kernel5 » ajoute un canal Hilscher au « kernel4 ».

J’ai bien sûr créé les applications exemples « app5 » qui roule avec le « kernel4 » et « app6 » motorisé par le « kernel5 », le tout en version console ou GUI.

Comme chaque canal Hilscher est susceptible de gérer un bus de terrain différent, classique ou sur Ethernet Temps réel, chaque canal est géré par une tâche indépendante qui exécute son propre programme utilisateur avec une période que l’on peut configurer.
Les tâches « fieldbus » communiquent avec la tâche principale via les DPM génériques déjà évoquées.

Ainsi l’application « app6_gui », mon top model ;-), offre :

  • un serveur Modbus TCP pour y connecter par exemple un SCADA du marché,
  • une fonction IO Scanning avec une tâche client Modbus TCP par serveur d’E/S,
  • deux canaux cifX Hilscher, pour gérer deux cartes, par exemple une PROFIBUS DP Maitre et une EtherCAT Maitre, ou pour gérer une carte à deux canaux comme par exemple un PROFIBUS DP Maitre et un CANopen Maitre,
  • une interface graphique avec GtkAda, permettant de consulter l’état des communications et de l’application et de démarrer ou arrêter les programmes utilisateur,
  • l’intégration du « cifX TCP Server » permettant la configuration et le diagnostic des cartes par SYCON.net via une connexion TCP/IP.

Je vous remercie pour votre attention et vous souhaite une très bonne et heureuse année 2016 pleine de projets, personnels comme professionnels, et de réussite.

N’hésitez pas à nous solliciter.

Cordialement,
Stéphane