Archives par mot-clé : Modbus

A4A : Toujours dans les nuages

Bonjour,

L’article précédent était consacré à la mise en orbite basse de « Ada for Automation ».

Il me tenait à cœur d’obtenir rapidement une fonctionnalité identique à celle de cette même application de démonstration « App1 » munie de son interface en GtkAda.

J’ai donc rajouté, tant pour l’application « App1 » que pour l’application de simulation de la partie opérante « App1simu » les pages présentant l’état général de l’application, l’état du serveur Modbus TCP et, pour « App1 », l’état des clients Modbus TCP.

On a donc pour l’application « App1 » elle-même :

Et pour la simulation de la partie opérante :

Cela m’a permis de vérifier la pertinence de la solution Gnoga, que ce soit pour attacher des éléments déjà disponibles dans une page HTML + SVG à des objets de l’application écrite en Ada comme pour la vue synoptique principale ou les pages « état général » et « état du serveur Modbus TCP », ou pour créer des pages dynamiques comme pour la page d’état des clients Modbus TCP.

En effet, cette page s’adapte automatiquement en fonction de la configuration de la scrutation des serveurs Modbus TCP ou « IO Scanning » définie dans le code suivant :

------------------------------------------------------------------------------
--                            Ada for Automation                            --
--                                                                          --
--                   Copyright (C) 2012-2016, Stephane LOS                  --
--                                                                          --
-- This library is free software;  you can redistribute it and/or modify it --
-- under terms of the  GNU General Public License  as published by the Free --
-- Software  Foundation;  either version 3,  or (at your  option) any later --
-- version. This library is distributed in the hope that it will be useful, --
-- but WITHOUT ANY WARRANTY;  without even the implied warranty of MERCHAN- --
-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE.                            --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
------------------------------------------------------------------------------

with A4A.MBTCP_Client; use A4A.MBTCP_Client;
with A4A.Protocols; use A4A.Protocols.IP_Address_Strings;
with A4A.Protocols.LibModbus; use A4A.Protocols.LibModbus;

package A4A.Application.MBTCP_Clients_Config is

   --------------------------------------------------------------------
   --  Modbus TCP Clients configuration
   --------------------------------------------------------------------

   --  For each Modbus TCP Server define one client configuration task

   Config1 : aliased Client_Configuration :=
     (Command_Number    => 11,
      Enabled           => True,
      Debug_On          => False,
      Task_Period_MS    => 10,
      Retries           => 3,
      Timeout           => 0.2,

      Server_IP_Address => To_Bounded_String ("127.0.0.1"),
      --  127.0.0.1 / 192.168.0.100

      Server_TCP_Port   => 1504,
      --  502 Standard / 1502 PLC Simu / 1504 App1Simu

      Commands =>
        (
         --                                Period              Offset Offset
         --               Action Enabled Multiple Shift Number Remote  Local
         1 =>
           (Read_Input_Registers,   True,      10,    0,    10,     0,     0),
         2 =>
           (Read_Registers,         True,      20,    0,    10,     0,    10),
         3 =>
           (Write_Registers,        True,      30,    0,    20,    20,     0),
         4 =>
           (Read_Bits,              True,      30,    1,    16,     0,     0),
         5 =>
           (Read_Input_Bits,        True,      30,    2,    16,     0,    32),
         6 =>
           (Write_Register,         True,      30,    3,     1,    50,    30),
         7 =>
           (Write_Bit,              True,      30,    4,     1,     0,     0),
         8 =>
           (Write_Bits,             True,      30,    5,    15,     1,     1),

         9 => (Action              => Write_Read_Registers,
               Enabled             => True,
               Period_Multiple     => 10,
               Shift               =>  5,
               Write_Number        => 10,
               Write_Offset_Remote => 40,
               Write_Offset_Local  => 20,
               Read_Number         => 10,
               Read_Offset_Remote  => 10,
               Read_Offset_Local   => 20),
         10 =>
           (Read_Registers,         True,      50,    0,    10,   100,   100),
         11 =>
           (Read_Registers,         True,      50,    1,    10,   110,   110)
        )
     );

   Config2 : aliased Client_Configuration :=
     (Command_Number    => 2,
      Enabled           => False,
      Debug_On          => False,
      Task_Period_MS    => 100,
      Retries           => 3,
      Timeout           => 0.2,

      Server_IP_Address => To_Bounded_String ("127.0.0.1"),
      Server_TCP_Port   => 1503, -- My own MBTCP server

      Commands =>
        (
         --                                Period              Offset Offset
         --               Action Enabled Multiple Shift Number Remote  Local
         1 =>
           (Read_Registers,         True,      10,    0,    10,     0,     0),
         2 =>
           (Write_Registers,        True,      30,    1,    10,     0,     0)
        )
     );

   --  Declare all clients configuration in the array
   --  The kernel will create those clients accordingly

   MBTCP_Clients_Configuration : Client_Configuration_Access_Array :=
     (1 => Config1'Access,
      2 => Config2'Access);

end A4A.Application.MBTCP_Clients_Config;

Ainsi, pour chaque serveur scruté, une tâche cliente est créée qui va exécuter cycliquement les commandes renseignées dans le tableau de configuration.

La page sera donc automatiquement ajustée en créant dynamiquement les sections relatives aux tâches clientes avec une table d’état des commandes tout aussi adaptée.

Et comme l’on utilise que du HTML5, du SVG et des feuilles de style CSS3, l’application peut changer de « look » sans avoir besoin de recompiler celle-ci.

D’ailleurs, comme je n’ai aucune prétention concernant mes talents en design, j’accepte bien volontiers toute suggestion dans ce domaine.

En éternel débutant, tous vos commentaires et / ou suggestions sont bien sûr les bienvenus.

Cordialement,
Stéphane

« Ada for Automation » in the cloud !

Bonjour,

J’évoque ça et là le projet « Ada for Automation » mais seuls le code source et les articles sur ce blog, dans lesquels figurent quelques copies d’écran et photos, ainsi qu’une documentation incomplète, étaient disponibles jusqu’alors.

J’étais bien présent au JDLL mais pas vous (ou nous nous sommes ratés…) et / ou vous n’avez pu assister aux démonstrations et conférence…

Pour ceux intéressés, qui souhaiteraient y voir fonctionner mais sans passer trop de temps en téléchargement, installation d’outils, compilation et mise en œuvre, ainsi que pour les tests et démonstrations, j’ai installé dans le nuage une machine virtuelle, qui exécute une Debian Jessie 64 bits, et une paire d’applications très simples avec une interface web fondée sur Gnoga dont il a déjà été question notamment ici.

"Ada for Automation" in the cloud !
« Ada for Automation » in the cloud !

Merci à ceux qui rendent cette chose possible, je pense notamment aux auteurs et contributeurs du logiciel libre.

Voici donc l’application 1 :
http://ada4automation.slo-ist.fr:8080

Et vu qu’on est dans le virtuel une simulation de la partie opérante :
http://ada4automation.slo-ist.fr:8081

Ces deux applications échangent leurs données via le protocole Modbus TCP grâce à libmodbus.

Chacune intègre son propre serveur web auquel on a affecté un port différent du port standard (le port 80).
On accède donc aux pages en spécifiant l’adresse et le port comme dans les liens fournis.

Normalement, si l’application de simulation est correctement pilotée, tout est en Auto et l’eau arrive toute seule de la vanne.
En fonction des seuils sur le niveau, la vanne s’ouvre et se ferme et la pompe tourne ou s’arrête.

En mode Manu, il est possible de piloter les actionneurs directement depuis l’interface.

En survolant les éléments, ceux qui peuvent être manœuvrés disposent d’une infobulle, sont mis en évidence et le curseur change également.
La documentation n’est plus trop à jour malheureusement, j’y travaille.
Au cas où vous souhaiteriez quelques explications, une aide en ligne est disponible.

C’est juste une démonstration. Cela devrait s’étoffer. On est à Lyon tout de même…
J’apprends encore Ada, les technologies web, linux…, bref, tout, donc ne soyez pas méchants.

Commentaires et suggestions bienvenus !

Cordialement,
Stéphane

A4A : Modbus TCP Server + Web HMI = A4A_Piano

Bonjour,

J’évoquais ce tantôt en fin d’article une application mêlant un serveur Modbus TCP et une IHM Web pour constituer un « piano » pour mes essais et démonstrations.

Cette application s’appuie donc sur le framework Gnoga qui permet de réaliser des IHM Web entre autres. Gnoga, de Monsieur David Botton, intègre également les Simple Components de Monsieur Dmitry Kasakov qui fournissent entre autres le serveur web embarqué dans l’application.

Gnoga permet la création dynamique de contenu web et l’animation des pages depuis une application écrite en Ada.

En ce moment je joue beaucoup avec Inkscape qui permet plein de fantaisie dans l’édition au format SVG de graphiques vectoriels.
C’est bien sûr intéressant pour dessiner des synoptiques que l’on pourra animer relativement facilement et cela permet aussi de faire un beau schéma :

Structure de l'application A4A_Piano
Structure de l’application A4A_Piano

L’application « A4A_Piano » met en œuvre le noyau « kernel0 » qui intègre seulement un serveur Modbus TCP, fourni par libmodbus, et une tâche principale ainsi qu’une tâche périodique.
Le noyau gère les échanges entre les tâches et le serveur Modbus TCP, la tâche principale appelle la fonction principale du programme utilisateur, la tâche périodique appelle la fonction périodique du programme utilisateur.
Le programme utilisateur est en charge de la gestion des échanges entre les zones mémoire E/S et les objets utilisateur ainsi que du traitement de ces objets.
C’est de l’histoire ancienne.

L’IHM Web est composée d’une part des vues affichées dans le / les navigateurs, ces vues étant constituées naturellement de technologies Web telles HTML 5, CSS, SVG et JavaScript, et d’une contrepartie en Ada fondée sur le patron de conception Modèle-Vue-Contrôleur un peu bricolé.

Tel que réalisé dans « A4A_Piano », le code HTML est juste une amorce, le SVG et le CSS ont été écrits à la main, je vous conseille la lecture des tutoriels de Monsieur Jenkov, courts et efficaces.
Avec un peu d’habitude on arrive à faire de belles choses avec SVG et Inkscape et on peut alors penser plus grand.

En fait, plutôt que de tout piloter d’un côté ou de l’autre, j’ai pris le parti de laisser l’aspect graphique côté technologies Web et de n’agir que sur un attribut d’état. En fonction de l’état, le CSS fait le reste pour l’animation.

Chaque objet de synoptique HTML ou SVG que l’on souhaite animer dispose d’un identifiant dont on pourra se servir pour le connecter à un pendant « View », un objet dérivé des objets fournis par Gnoga.
Pour chaque connexion on va instancier une collections d’objets « View » ainsi qu’une tâche gérant le rafraîchissement.

Ces objets « View » gèrent la mise à jour des objets HTML ou SVG auxquels on les a connectés à la création de la connexion ainsi que l’interaction avec l’utilisateur, c’est à dire les « Cliques » souris par exemple.
D’un autre côté on les a également connectés avec un objet « Controller » dont le rôle est d’une part de servir de proxy aux objets « View » et de gérer l’accès en lecture / écriture des données utilisateur.
La tâche « Scanner » va piloter elle le rafraîchissement des « Controllers ».

Le code n’est sans doute pas optimal mais il est quand même disponible dans le dépôt comme d’habitude.

Pour information, j’espère bien vous voir à ces 17èmes Journées du Logiciel Libre…
D’autant plus que les Gentils Organisateurs ont bien voulu m’accorder la faveur insigne d’un stand pour la présentation du projet « Ada for Automation » !

JDLL2016

Cordialement,
Stéphane

A4A : Exemple d’application 6 : Modbus TCP Client / Serveur + deux canaux Hilscher

Bonjour,

Comme je l’indiquais récemment l’application « app6_gui » offre :

  • un serveur Modbus TCP pour y connecter par exemple un SCADA du marché,
  • une fonction IO Scanning avec une tâche client Modbus TCP par serveur d’E/S,
  • deux canaux cifX Hilscher, pour gérer deux cartes, par exemple une PROFIBUS DP Maitre et une EtherCAT Maitre, ou pour gérer une carte à deux canaux comme par exemple un PROFIBUS DP Maitre et un CANopen Maitre,
  • une interface graphique avec GtkAda, permettant de consulter l’état des communications et de l’application et de démarrer ou arrêter les programmes utilisateur,
  • l’intégration du « cifX TCP Server » permettant la configuration et le diagnostic des cartes par SYCON.net via une connexion TCP/IP.

Je voulais faire un article à part pour cette application, avec des images. J’ai donc monté la manipulation suivante :

Manip-2016-01-08

On a donc un PC, sous Debian Jessie et un noyau Linux 64 bit standard, avec deux cartes Hilscher PCI, une cifX 50-DP configurée en Maître PROFIBUS DP et une cifX 50-RE configurée en Maître EtherCAT :

PC+2cifX50

Comme Esclave PROFIBUS DP j’ai une carte Hilscher CB-AB32-DPS, un « piano » avec deux octets en entrée et autant en sortie qui permet de monter une manipulation en deux secondes et demie :

CB-AB32-DPS

Pour EtherCAT, j’ai également un « piano », le NXIO 500-RE, qui reçoit sa fonctionnalité en insérant la carte MMC qui convient, ici EtherCAT Esclave, avec toujours deux octets d’E/S :

NXIO-500-RE

Le client Modbus TCP qui interroge le serveur de l’application 6 est Modbus Poll dont j’ai déjà fait mention il y a longtemps.

Quant au client Modbus TCP, ce que certains appellent IO Scanning, il est configuré pour exécuter deux requêtes sur un serveur d’un genre particulier sur lequel je reviendrai plus tard.

Je vous épargne la trace laissée par l’application dans le terminal depuis lequel elle est lancée, qui est certes informative, voire même didactique, mais un peu indigeste.

La fenêtre principale s’ouvre et l’on y trouve les onglets suivants.

La vue « Identité », (remarquez la version !) :

A4A-App6-Identity

La vue « Etat général » en deux bouts :

A4A-App6-GeneralStatus1

A4A-App6-GeneralStatus2

On notera la présence des informations d’état des deux tâches « Fieldbus ».

On trouve ensuite la vue d’état du serveur Modbus TCP qui affiche les compteurs de requêtes, et bien évidemment celui qui bouge est celui de la fonction 3 configurée côté Modbus Poll :

A4A-App6-ModbusTCPServer

La vue « Client Modbus TCP » affiche les informations d’état concernant les deux requêtes configurées pour le serveur secret pour le moment, le second client étant désactivé :

A4A-App6-ModbusTCPClients

Notez que lorsque l’on rajoute des requêtes au niveau de la configuration des clients, la vue d’état est bien sûr adaptée automatiquement.

Puis viennent les deux vues d’état des canaux Hilscher cifX.

L’un est donc PROFIBUS DP Maître :

A4A-App6-ProfibusDPMaster

Et l’autre est EtherCAT Maître :

A4A-App6-EtherCATMaster

Le programme utilisateur à l’œuvre dans les trois tâches est très sensiblement identique :

   procedure Process_IO is

      Elapsed_TON_1 : Ada.Real_Time.Time_Span;

   begin

      if First_Cycle then

         Output_Byte := Pattern_Byte;

         First_Cycle := False;

      end if;

      Tempo_TON_1.Cyclic (Start   => not TON_1_Q,
                          Preset  => Ada.Real_Time.Milliseconds (500),
                          Elapsed => Elapsed_TON_1,
                          Q       => TON_1_Q);

      if TON_1_Q then

         case Cmd_Byte is

         when 0 =>
            Output_Byte := ROR (Value => Output_Byte, Amount => 1);

         when 1 =>
            Output_Byte := ROL (Value => Output_Byte, Amount => 1);

         when others => Output_Byte := Pattern_Byte;

         end case;

      end if;

   end Process_IO;

On trouve aussi dans « Ada for Automation » une application exemple 5, « app5 », identique à « app6 » mais qui ne gère elle qu’un seul canal Hilscher cifX.

Mais quel est donc ce serveur Modbus TCP secret dont je vous entretiens depuis le début ?
La NXIO 500-RE ne pourrait-elle faire l’affaire avec une MMC ad hoc ? Sans doute, mais pour des raisons qui m’échappent ce firmware n’existe pas…

Aussi, je me suis dit que je n’avais qu’à utiliser le « kernel 0 », issu de « app1simu », et qui fournit un serveur Modbus TCP.
Oui mais, et les boutons et LEDs ? GtkAda aurait bien sûr pu convenir mais comme je jouais avec Gnoga…

Taa taan ! Voilà un « piano » piloté depuis le navigateur !

A4A-App6-A4A-Piano-Local

Comme c’est du SVG, donc du vectoriel, même depuis un mobile ça se pilote.

Et en plus l’application supporte les connexions multiples ! On peut jouer à plusieurs ! J’adore…
Promis, dès que mon code est un peu plus propre je l’envoie sur le dépôt.

Cordialement,
Stéphane

A4A : Applications et Noyaux

Bonjour,

Le framework « Ada for Automation » est fourni avec un certain nombre d’applications exemples, simple applications consoles ou avec interface graphique en GtkAda, et très bientôt je l’espère avec interface web grâce à Gnoga, un autre framework que je vous avais présenté très brièvement ici, et avec lequel je m’instruis beaucoup tout en m’amusant.

Ainsi par exemple le projet de base A4A est proposé en version console, dont le fichier projet est « a4a.gpr », et en version interface graphique avec « a4a_gui.gpr ».
Cette application est la plus simple possible et joue avec les deux octets d’entrée et sortie à sa disposition, ne mettant en œuvre que des fonctions de rotation et d’affectation.

Ce projet repose sur un noyau, partagé par les deux versions, qui gère le programme utilisateur, un serveur Modbus TCP et des clients Modbus TCP, un pour chaque serveur d’E/S.
La tâche principale collabore avec une tâche périodique annexe via la nouvelle DPM générique dont il a été question précédemment, chacune des tâches disposant d’un programme utilisateur à exécuter à l’état RUN.
Le serveur Modbus TCP comme les clients échangent leurs données avec la tâche principale également via des DPM spécifiques dont le rôle est d’assurer la cohérence des données échangées.

Via le mécanisme d’extension des projets supporté par la suite d’outils fournis par AdaCore, on peut construire des projets héritant des fichiers du projet parent et ajoutant de nouveaux fichiers ou en les substituant s’ils portent le même nom.

C’est ce mécanisme qui est utilisé par exemple avec l’application 1 présentée ici, et encore ici.

Aussi, comme cette application hérite de tout A4A, son dossier source ne contient que ce qui lui est propre, son identification, sa configuration et le programme utilisateur.

Pour cette application 1, ne disposant pas de la partie opérative on a développé une application de simulation, nommée « app1simu ».
Cette application ne nécessitant que la fonction serveur Modbus TCP on a créé un nouveau noyau issu du noyau de A4A auquel on a ôté la gestion des clients Modbus TCP.
Ce noyau logeait dans le dossier de l’application « app1simu » puisqu’il lui était spécifique.

Il en fut de même pour l’application 2 qui met en œuvre une carte Hilscher cifX en lieu et place des clients Modbus TCP.

Et encore de même avec l’application 3 qui remplace les clients Modbus TCP par un maitre Modbus RTU.

Le problème dans cette situation c’est que pour réutiliser un noyau de « app1simu », de « app2 » ou de « app3 », il eu fallut hériter de ces projets ou lister les sources que l’on souhaitait réutiliser, c’est possible, ou pire dupliquer les sources, beurk… Bref, ce n’était pas satisfaisant d’autant que je comptais multiplier les noyaux… On multiplie ce qu’on peut.

J’ai donc réorganisé le framework de sorte que les noyaux se retrouvent dans leurs propres dossiers.
Piloté par une variable externe ou un scénario depuis GPS, le dossier sélectionné est ajouté au projet en cours de traitement.

Ainsi le noyau de « app1simu » est maintenant le « kernel0 », celui de A4A est le « kernel1 », celui de « app3 » est devenu « kernel2″…

C’est beau et ça fonctionne à peu près.
La variable est définie dans un fichier de projet partagé par les autres fichiers de projets, le projet « shared.gpr », et reçoit une valeur initiale par défaut qui est « kernel1 » si elle n’est pas définie par ailleurs.
Attention cependant de laisser GPS terminer ses opérations de mise à jour des références croisées avant de changer de noyau au moyen de la liste déroulante du scénario sous peine de corruption de sa base de données, du moins avec la version Debian.
Ce n’est pas très grave puisqu’il suffit de supprimer celle-ci pour qu’elle soit reconstituée mais c’est un peu pénible.

...
   type Kernel_Type is
      ("kernel0",   --  Modbus TCP Server
       "kernel1",   --  Modbus TCP Server + Modbus TCP IO Scanning
       "kernel2",   --  Modbus TCP Server + Modbus RTU IO Scanning
       "kernel3",   --  Modbus TCP Server + one Hilscher cifX channel
       "kernel4",   --  Modbus TCP Server + Modbus TCP IO Scanning
                    --  + one Hilscher cifX channel
       "kernel5"    --  Modbus TCP Server + Modbus TCP IO Scanning
      );            --  + two Hilscher cifX channels

   Kernel : Kernel_Type := external ("Kernel", "kernel1");
...

Et l’on voit que le noyau de « app2 » est devenu le « kernel3 », que le « kernel4 » fusionne le « kernel1 » et le « kernel3 » et que le « kernel5 » ajoute un canal Hilscher au « kernel4 ».

J’ai bien sûr créé les applications exemples « app5 » qui roule avec le « kernel4 » et « app6 » motorisé par le « kernel5 », le tout en version console ou GUI.

Comme chaque canal Hilscher est susceptible de gérer un bus de terrain différent, classique ou sur Ethernet Temps réel, chaque canal est géré par une tâche indépendante qui exécute son propre programme utilisateur avec une période que l’on peut configurer.
Les tâches « fieldbus » communiquent avec la tâche principale via les DPM génériques déjà évoquées.

Ainsi l’application « app6_gui », mon top model ;-), offre :

  • un serveur Modbus TCP pour y connecter par exemple un SCADA du marché,
  • une fonction IO Scanning avec une tâche client Modbus TCP par serveur d’E/S,
  • deux canaux cifX Hilscher, pour gérer deux cartes, par exemple une PROFIBUS DP Maitre et une EtherCAT Maitre, ou pour gérer une carte à deux canaux comme par exemple un PROFIBUS DP Maitre et un CANopen Maitre,
  • une interface graphique avec GtkAda, permettant de consulter l’état des communications et de l’application et de démarrer ou arrêter les programmes utilisateur,
  • l’intégration du « cifX TCP Server » permettant la configuration et le diagnostic des cartes par SYCON.net via une connexion TCP/IP.

Je vous remercie pour votre attention et vous souhaite une très bonne et heureuse année 2016 pleine de projets, personnels comme professionnels, et de réussite.

N’hésitez pas à nous solliciter.

Cordialement,
Stéphane