Archives de catégorie : Hilscher

La société Hilscher développe depuis 1986 des solutions de communication intelligentes.
La dernière génération d’interfaces est construite autour des systèmes sur puce netX développés par Hilscher.

Raspberry pi : CODESYS & Al.

Bonjour,

Introduction

J’ai préparé une super démo que je devais présenter à des collègues et partenaires mais nous voici confinés et mes présentations devront attendre… Quoique… Quid d’un article ?

Les derniers articles traitaient de Raspberry Pi, de netPI Core / RTE et netIOT Edge « Connect », plateformes matérielles pour le marché industriel développées par Hilscher et basées sur le Raspberry Pi, de Docker, Node-RED, InfluxDB, Grafana et j’avais donc prévu de tester les SoftPLC (automates logiciels) CODESYS ou STRATON.

J’ai ainsi concocté une mixture de tout ceci, avec CODESYS cette fois car ma manipulation inclut le variateur INFRANOR qui se pilote via EtherCAT et que j’ai déjà évoqué ici.

Il se trouve que l’application de contrôle pour le Raspberry Pi dispose de EtherCAT Maitre, entre autres.

On montrera donc :

  • un automate CODESYS pilotant via EtherCAT un variateur INFRANOR,
  • un flow Node-RED avec un tableau de bord qui permet d’interagir avec le variateur via le serveur OPC de CODESYS,
  • ce flow renseigne également une base de données temporelles InfluxDB,
  • et une instance Grafana vient lire les données et les affiche.

Il est tout à fait possible de faire la même chose avec un Rasberry Pi mais par convenance je ferai ma démonstration avec un netPI RTE puisque c’est celui que j’ai sous la main.
Une version netPI Core suffit amplement à ma démo mais bien sûr j’aurais pu utiliser une version netPI Core / RTE ou netIOT Edge « Connect », cette dernière proposant une intégration native de Node-RED avec utilisation du protocole sécurisé HTTPS.

Le plan

Voici donc le plan d’ensemble, the big picture, de la solution envisagée :

CODESYS

J’ai donc suivi pas à pas les instructions pour la création du conteneur CODESYS et installé l’environnement de développement sur mon poste et les paquets runtime et gateway comme demandé.

J’utilise pour ma part l’interface WIFI (wlan0) pour accéder depuis mon PC de développement à la cible CODESYS.

Il est nécessaire d’importer le fichier ESI du variateur dans l’IDE CODESYS et l’on peut alors créer une configuration avec l’EtherCAT Master sur le port LAN (eth0).

On peut configurer les données échangées cycliquement entre l’automate et le variateur :

Mon programme en Structured Text ressemble à de l’Ada, c’est normal. 😉

J’ai défini quelques variables mappées côté EtherCAT :

Et d’autres remontant à l’IHM via le serveur OPC :

Jusque là, ça va :

Docker

Comme je veux que mon conteneur InfluxDB reste isolé du monde extérieur, je crée un réseau « myNet1 » auquel je vais connecter les conteneurs InfluxDB donc, le conteneur Node-RED qui va alimenter la base et le conteneur Grafana qui va y piocher :

J’ai donc créé mes conteneurs en suivant les instructions pour Node-RED, InfluxDB et Grafana en connectant les conteneurs sur mon réseau privé « myNet1 » :

Node-RED

Dans Node-RED, auquel on accède via le port 1880, j’ai ajouté quelques nœuds à ma palette comme node-red-dashboard, node-red-contrib-opcua, node-red-contrib-influxdb :

Puis j’ai développé ce flow qui d’une part communique avec CODESYS en OPC UA et d’autre part avec les composants du tableau de bord.
Il injecte également dans la base InfluxDB les échantillons de la vitesse.

On obtient un magnifique tableau de bord pour piloter le variateur INFRANOR :

On y voit le mode d’opération (3 : boucle de vitesse), la vitesse actuelle sous forme de jauge ou de diagramme, un curseur permettant de modifier la consigne, le mot d’état et pour finir le mot de contrôle.

0, 6, 7, 15… ça tourne ! 128 pour acquitter les défauts.

Et le menu hamburger permet d’accéder directement à la visualisation Grafana qui nous attend sur le port 3000 :

Le flow est disponible ici.

Puisque nous voilà confinés pour un moment, n’est-ce pas l’occasion rêvée de se mettre à l’autoformation ? 😉

Bien sûr, si vous ne disposez pas d’un variateur, tout autre esclave fera l’affaire étant donné que CODESYS supporte plusieurs technologies de bus de terrain sur Ethernet, CAN et liaison série.

Vous pourriez utiliser aussi le netHAT sur le Raspberry Pi, ou le netPI RTE / netIOT Edge « Connect », qui embarque un netX 51 permettant de gérer tous les protocoles sur Ethernet Temps Réel, ce qui autorise plein d’expériences amusantes.

Have fun comme disent nos collègues anglophones.

Cordialement,
Stéphane

A4A : netPI RTE 3

Le netPI RTE 3

Bonjour,

La société Hilscher a conçu une déclinaison industrielle du Raspberry Pi 3, la gamme netPI, aujourd’hui constituée de deux produits, le netPI CORE 3 et le netPI RTE 3.

Ces deux produits partagent donc la même ascendance Raspberry Pi et le netPI RTE 3 apporte en sus une connectivité Ethernet Temps Réel car il dispose d’un système sur puce netX 51.

Le SoC netX 51 est connecté via une liaison SPI haute vitesse à la CPU du Raspberry Pi comme l’est le netX 52 qui équipe le netHAT dont il a déjà été question ici.

Ce même matériel est mis en œuvre dans le netIOT Edge Connect avec une distribution logicielle différente qui se veut plus simple d’utilisation avec Node-RED intégré de base.

Dans l’article précédent je présentais la technologie Docker, intégrée dans tous les produits de la gamme netIOT, avec un exemple « Ada for Automation » et je me propose d’étendre cette démonstration au netPI RTE 3.

Les exemples de code en C

On trouve sur le Hub communautaire une image contenant des exemples d’utilisation du netX 51 pour les protocoles de bus de terrain PROFINET, EtherNet/IP, EtherCAT, POWERLINK et Modbus/TCP.

Il faut noter que le netX 51 est conçu spécifiquement pour gérer des piles de protocoles industriels, cela uniquement en tant qu’esclave. Le cas particulier est celui de Modbus TCP puisqu’il peut être dans ce cas Client et / ou Serveur.

Les sources du Dockerfile sont disponible sur GitHub ici.

Cette image fournit, outre les exemples de code en C, les firmwares qui implémentent les piles de protocoles pour le netX 51 ainsi que le pilote pour Linux qui fournit l’interface applicative cifX. Et bien sûr la documentation qu’il vous faudra étudier avec soin avant de solliciter le support…

L’image de base « Ada for Automation »

Partons de cette image pour créer la notre comme dans ce Dockerfile qui ajoute les outils pour le développement en Ada, la libmodbus, récupère les sources et compile « Ada for Automation » et une application de test basique mettant en œuvre l’API cifX.

#use latest armv7hf compatible raspbian OS version from group balena as base image
#with cifX / netX driver and real-time ethernet programming examples
FROM hilschernetpi/netpi-netx-programming-examples

#enable building ARM container on x86 machinery on the web (comment out next line if built on Raspberry)
#RUN [ "cross-build-start" ]

#labeling
LABEL maintainer="slos@hilscher.com" \
      version="V0.0.1" \
      description="Debian(stretch) / Hilscher netX / Ada for Automation Development"

#version
ENV ADA_FOR_AUTOMATION_HILX_BASIS_DEV_VERSION 0.0.1
   
#install git, gnat and gprbuild
RUN apt-get update  \
    && apt-get install git gnat gprbuild

#install libmodbus
RUN apt-get update  \
    && apt-get install libmodbus5 libmodbus-dev

#install Ada for Automation
RUN mkdir --parents /home/pi/Ada \
    && cd /home/pi/Ada \
    && git clone https://gitlab.com/ada-for-automation/ada-for-automation.git A4A \
    && mkdir A4A/Hilscher

#copy some Hilscher files relating to netX Diag and remote access
COPY ./Hilscher/ /home/pi/Ada/A4A/Hilscher/

#and build some demo applications
RUN cd "/home/pi/Ada/A4A/demo/000 a4a-k0-cli" && make

#SSH port
EXPOSE 22

#the entrypoint shall start ssh
ENTRYPOINT ["/usr/sbin/sshd", "-D"]

#set STOPSGINAL
STOPSIGNAL SIGTERM

#stop processing ARM emulation (comment out next line if built on Raspberry)
#RUN [ "cross-build-end" ]

Construisons l’image :

docker build --tag=netpi-a4a-basis-dev:latest .

On peut tester sur le Raspberry Pi avec le netHAT mais cela demande quelques modifications car, si le pilote Linux fourni dans cette image convient au netHAT, il n’en est pas de même pour les firmwares,les produits étant différents.

Il est donc nécessaire d’adapter en fonction du matériel à sa disposition.

A la création du conteneur, il faut fournir le « device » qui permet la connexion en SPI.

docker container create --publish 22:22 --privileged=true --device=/dev/spidev0.0:/dev/spidev0.0 netpi-a4a-basis-dev:latest

On peut jouer avec le conteneur et, si tout baigne, on tague :

docker tag netpi-a4a-basis-dev soloist/netpi-a4a-basis-dev:latest

Puis on se connecte et on pousse :

docker push soloist/netpi-a4a-basis-dev

L’image « Ada for Automation » Web

Comme dans l’article précédent, l’image suivante rajoute Gnoga et ses dépendances et compile une application de test disposant d’une interface web.

#use latest Ada for Automation Basis Development as base image
FROM soloist/netpi-a4a-basis-dev:latest

#enable building ARM container on x86 machinery on the web (comment out next line if built on Raspberry)
#RUN [ "cross-build-start" ]

#labeling
LABEL maintainer="slos@hilscher.com" \
      version="V0.0.1" \
      description="Debian(stretch) / Hilscher netX / Ada for Automation Web Development"

#version
ENV ADA_FOR_AUTOMATION_HILX_WEB_DEV_VERSION 0.0.1
   
#install Gnoga and dependencies (Simple Components, ZanyBlue)
RUN mkdir --parents /home/pi/Ada/Gnoga \
    && cd /home/pi/Ada/Gnoga \
    && git clone https://git.code.sf.net/p/gnoga/code gnoga \
    && cd /home/pi/Ada/Gnoga/gnoga \
    && make release \
    && make install

#build some Ada for Automation Web demo applications
RUN cd "/home/pi/Ada/A4A/demo/052 a4a_hilscherx_piano" && make

#install the PROFINET IO Device firmware for example
RUN cd "/home/pi/firmwares" \
    && dpkg -i netx-docker-pi-pns-3.12.0.2.deb

#SSH port
EXPOSE 22

#the entrypoint shall start ssh
ENTRYPOINT ["/usr/sbin/sshd", "-D"]

#set STOPSGINAL
STOPSIGNAL SIGTERM

#stop processing ARM emulation (comment out next line if built on Raspberry)
#RUN [ "cross-build-end" ]

Je recommence la séquence en plus condensé…

docker build --tag=netpi-a4a-web-dev:latest .
docker container create --publish 22:22 -p 8090:8090 --privileged=true --device=/dev/spidev0.0:/dev/spidev0.0 netpi-a4a-web-dev:latest
docker tag netpi-a4a-web-dev soloist/netpi-a4a-web-dev:latest
docker push soloist/netpi-a4a-web-dev

Voilà mes images dans les nuages chez Docker Hub.

Portainer

Avec le Raspberry Pi on a accès au système Linux qui fait tourner Docker et on peut donc interagir avec ce dernier en ligne de commande comme nous l’avons fait jusqu’ici.

Sur les cibles netIOT Edge, le système Linux de base est sécurisé et il n’est pas possible d’y accéder. Aussi ces cibles, disposant toutes de Docker, disposent également d’une interface web qui permet l’interaction avec Docker, j’ai nommé Portainer.

On y accède via le portail :

Edge Gateway Manager

Portainer permet entre autres de créer et de gérer images et conteneurs.

Portainer

Mon conteneur créé et démarré, je me connecte en SSH, par exemple avec PuTTY.

Je lance l’application et… ça tombe en marche !

Hilscher fournit le fichier GSDML qui convient pour la configuration du réseau PROFINET avec TIA Portal et on peut visualiser les données échangées dans une table de variables :

TIA Portal

Que l’on peut manipuler depuis l’interface web de l’application :

Piano

L’état de l’application nous montre un comportement temps réel plutôt satisfaisant, ce qui ce conçoit car le système de base est un Linux avec patches PREEMPT_RT et que Docker ne détruit pas les propriétés temps réel.

Piano Status

On peut aussi s’intéresser à la vue d’état cifX :

cifX Status

Ou se connecter avec SYCON.net, l’outil de configuration standard Hilscher car « Ada for Automation » embarque le protocole de diagnostic et accès distant.

SYCON.net Diagnostic

Conclusion

Le netPi est au départ un produit conçu pour connecter les technologies de l’information avec l’opérationnel, soit IT/OT, et gérer localement des données pour les trier, les agréger, les mettre en forme, etc…

Ainsi l’on a l’embarras du choix pour acquérir et traiter ces données.

Au niveau acquisition avec les différents interfaces (LAN, WiFi, RTE, RS 432/422/485…) et protocoles de communication disponibles comme au niveau traitement avec Node-RED, tous les langages disponibles dans Linux (C, Python, Java…), des standards de l’automatisme comme CODESYS ou STRATON, et bien sûr « Ada for Automation », l’éclectisme est de mise à tous les étages et la liberté offerte par cette plateforme la rend propice à toutes les expérimentations et réalisations industrielles.

Cordialement,
Stéphane

A4A : Conteneur Docker

Bonjour,

Docker

J’indiquais dans l’article précédent que, sur les solutions netIOT Edge de Hilscher, Docker permet d’intégrer toutes sortes d’applications pour traiter les données acquises depuis le terrain ou le process avant de fournir celles-ci digérées aux applications hébergées dans le fameux nuage d’où doit pleuvoir la manne.

C’est aussi valable pour le netPI comme pour le Raspberry Pi sur lequel il est tout à fait possible d’installer Docker.

Il est bien sûr indispensable de se familiariser avec Docker puis de consulter la documentation pour comprendre les concepts.

Avec Docker, une application est empaquetée avec l’environnement nécessaire à son exécution dans une image que l’on va pouvoir instancier en conteneur(s) que Docker va exécuter.

On peut voir cela comme une approche composant où l’on isole chaque application et son environnement.

Pour le netPI, Hilscher offre nombre d’images prêtes à l’emploi sur le Hub communautaire où figurent également la plupart des projets  open source.

Ces images sont construites à partir de recettes, les docker files, et tous les fichiers pour les images fournies sont disponibles sur GitHub.

Dockerfile

Afin de me former sur ces technologies bien attirantes il m’est apparu que j’avais un projet candidat à la conteneurisation, Ada for Automation bien sûr !

J’ai donc installé Docker sur mon Raspberry Pi et, en m’inspirant des Dockerfiles de mes collègues, j’en ai écrit un basique que je vous présente ci-dessous.

#use latest armv7hf compatible raspbian OS version from group balena as base image
FROM balenalib/armv7hf-debian:stretch

#enable building ARM container on x86 machinery on the web (comment out next line if built on Raspberry)
#RUN [ "cross-build-start" ]

#labeling
LABEL maintainer="slos@hilscher.com" \
      version="V0.0.1" \
      description="Debian(stretch) / Ada for Automation Development"

#version
ENV ADA_FOR_AUTOMATION_BASIS_DEV_VERSION 0.0.1

#install ssh, gcc, create user "pi" and make him sudo
RUN apt-get update  \
    && apt-get install -y openssh-server build-essential \
    && mkdir /var/run/sshd \
    && useradd --create-home --shell /bin/bash pi \
    && echo 'pi:raspberry' | chpasswd \
    && adduser pi sudo
   
#install git, gnat and gprbuild
RUN apt-get update  \
    && apt-get install git gnat gprbuild

#install libmodbus
RUN apt-get update  \
    && apt-get install libmodbus5 libmodbus-dev

#install Ada for Automation and build some demo applications
RUN mkdir --parents /home/pi/Ada \
    && cd /home/pi/Ada \
    && git clone https://gitlab.com/ada-for-automation/ada-for-automation.git A4A \
    && cd "/home/pi/Ada/A4A/demo/000 a4a-k0-cli" && make

#SSH port
EXPOSE 22

#the entrypoint shall start ssh
ENTRYPOINT ["/usr/sbin/sshd", "-D"]

#set STOPSGINAL
STOPSIGNAL SIGTERM

#stop processing ARM emulation (comment out next line if built on Raspberry)
#RUN [ "cross-build-end" ]

Celui-ci, à partir d’une debian stretch, installe SSH, GCC, Git, les outils pour Ada GNAT, GPRBuild, et la librairie libmodbus.

Pour finir, il tire « Ada for Automation » depuis gitlab et compile la plus simple des applications qui implémente un serveur Modbus TCP et recopie quelques registres en entrée sur quelques registres en sortie.

Image

Construire l’image est trivial. Depuis le répertoire contenant le Dockerfile, il suffit de saisir la commande :

docker build --tag=rpi-a4a-basis-dev:latest .

Cette commande construit donc une image ayant pour nom « rpi-a4a-basis-dev » et taguée « latest » depuis le répertoire courant.

La commande suivante permet de lister les images produites :

docker image ls -a

Conteneur

On peut bien sûr créer aussitôt un conteneur à partir de cette image avec la commande suivante :

docker container create --publish 22:22 -p 1503:1503 --privileged rpi-a4a-basis-dev:latest

On publie le port 22 pour SSH et le port 1503 pour Modbus TCP Serveur et on octroie le privilège de pouvoir tourner avec une priorité temps réel si nécessaire.

Notre conteneur est créé comme nous pouvons le constater avec la commande qui nous donne le nom qui lui a été affecté automatiquement :

docker container ls -a

Et on peut s’en servir dès à présent :

docker container start <nom_du_conteneur>

Un ssh en local ou distant permet de se connecter à notre conteneur, de naviguer en ligne de commande dans l’arborescence et de démarrer l’application de démonstration.

Empiler

Notre conteneur basique permet de réaliser des applications avec une interface en ligne de commande, sans interface graphique basée sur GtkAda ou Gnoga.

Avec Docker, il est facile d’empiler une nouvelle couche pour étendre la fonctionnalité.

Ainsi, le dockerfile suivant ajoute à l’image de base Gnoga et ses dépendances, SimpleComponents et Zanyblue, et compile l’application A4A_Piano qui dispose d’une interface web.

#use latest Ada for Automation Basis Development as base image
FROM rpi-a4a-basis-dev:latest

#enable building ARM container on x86 machinery on the web (comment out next line if built on Raspberry)
#RUN [ "cross-build-start" ]

#labeling
LABEL maintainer="slos@hilscher.com" \
      version="V0.0.1" \
      description="Debian(stretch) / Ada for Automation Web Development"

#version
ENV ADA_FOR_AUTOMATION_WEB_DEV_VERSION 0.0.1

#install Gnoga and dependencies (Simple Components, ZanyBlue)
RUN mkdir --parents /home/pi/Ada/Gnoga \
    && cd /home/pi/Ada/Gnoga \
    && git clone https://git.code.sf.net/p/gnoga/code gnoga \
    && cd /home/pi/Ada/Gnoga/gnoga \
    && make release \
    && make install

#build some Ada for Automation Web demo applications
RUN cd "/home/pi/Ada/A4A/demo/010 a4a_piano" && make

#SSH port
EXPOSE 22

#the entrypoint shall start ssh
ENTRYPOINT ["/usr/sbin/sshd", "-D"]

#set STOPSGINAL
STOPSIGNAL SIGTERM

#stop processing ARM emulation (comment out next line if built on Raspberry)
#RUN [ "cross-build-end" ]

On construit l’image de la même façon que la précédente :

docker build --tag=rpi-a4a-web-dev:latest .

Puis on crée le conteneur avec un port supplémentaire pour le serveur web intégré :

docker container create --publish 22:22 -p 1504:1504 -p 8081:8081 --privileged rpi-a4a-web-dev:latest

On démarre le conteneur :

docker container start <nom_du_conteneur>

Un ssh en local ou distant permet de se connecter à notre conteneur, de naviguer en ligne de commande dans l’arborescence et de démarrer l’application de démonstration.

Et en pointant un navigateur sur l’adresse du site on trouve les pages attendues !

Tandis qu’on peut jouer avec :

Il ne me reste plus qu’à y envoyer dans mon espace du Hub Docker.

Taguons nos images :

docker tag rpi-a4a-basis-dev soloist/rpi-a4a-basis-dev:latest
docker tag rpi-a4a-web-dev soloist/rpi-a4a-web-dev:latest

Connectons nous :

docker login

Et poussons :

docker push soloist/rpi-a4a-basis-dev
docker push soloist/rpi-a4a-web-dev

C’est prêt pour une utilisation avec votre Raspberry Pi ou le netPI !

Cordialement,
Stéphane

Node-RED, InfluxDB, Grafana, Docker

Bonjour,

Nous avons pu voir dans les articles précédents quelques tableaux de bord réalisés avec des composants issus de la bibliothèque suivante :
https://github.com/node-red/node-red-dashboard

Ce n’est certes pas la seule solution et le couple InfluxDB / Grafana est souvent cité pour réaliser des projets IoT avec le Raspberry Pi.

InfluxDB permet de stocker des données horodatées dans une base de données que Grafana va interroger pour les afficher sous forme de diagrammes, de graphiques, ou sous forme tabulaire.

Ce sont des projets « open source » et il est possible de les installer sur toutes sortes de machines dont le Raspberry Pi.

Il se trouve qu’il y a un nœud Node-RED qui permet d’insérer depuis un flow des données dans une base InfluxDB, ce qui rend l’opération triviale :
https://flows.nodered.org/node/node-red-contrib-influxdb

Voilà, voilà…

Les données du « flow » présenté ici parviennent via le lien (link) au nœud qui les envoie à la base de données InfluxDB.

Et Grafana peut piocher dans les données pour les afficher comme vous le souhaitez :

En ce qui concerne la mise en œuvre d’une telle solution sur votre Raspberry Pi les articles et la documentation ne manquent pas.

Sur les solutions durcies netIOT Edge de Hilscher le système d’exploitation sécurisé ne permet pas d’installer quoi que ce soit non signé par Hilscher et il faut utiliser Docker via l’interface d’administration Portainer, ce qui est chose relativement aisée.

En fait, des conteneurs officiels sont disponibles sur le Hub Docker tant pour InfluxDB que pour Grafana.

Et Portainer permet de télécharger les images et de configurer les conteneurs correspondants.

Bien sûr, InfluxDB comme Grafana ont beaucoup plus à offrir, ce que je vous laisse le soin d’approfondir.

Comme l’interface applicative est basée sur le protocole HTTP, toutes sortes d’architectures sont envisageables.

Cordialement,
Stéphane

A4A : Pilotage d’un variateur en EtherCAT

Bonjour,

J’espérais à voix haute pouvoir réaliser des manipulations avec un variateur communiquant en CANopen ou EtherCAT et mon souhait a été exaucé par un ami travaillant chez INFRANOR à Lourdes qui a bien voulu mettre à ma disposition un banc de test composé d’un variateur et d’un ensemble moteur / codeur… Miracle !

Je l’en remercie très chaleureusement !

Le banc est équipé d’un variateur XtrapulsPac et l’on peut depuis le site télécharger bien sûr la documentation, le logiciel de configuration Gem Drive Studio, le fichier ESI EtherCAT, en bref tout le nécessaire pour la manipulation.

Je n’ai pas rencontré de problème particulier avec Gem Drive Studio et j’ai pu configurer, régler le variateur et me familiariser avec son fonctionnement via la liaison série.

Pour ma démonstration, le PC de test étant un peu ancien, j’ai utilisé une carte Hilscher cifX au format PCI.

On peut télécharger une archive du DVD contenant la documentation, les outils de configuration et les firmwares ici.

Cependant, je préfère me fournir dans la base de connaissance qui dispose des dernières versions…

Ainsi, il est possible de se procurer la dernière version de l’outil de configuration SYCON.net.

Il est aussi possible de récupérer le dernier firmware EtherCAT Master .

On a donc importé dans SYCON.net le fichier ESI du variateur, menu « Network > Import Device Descriptions… », ne pas oublier de sélectionner le type de fichier « EtherCAT DDF », inséré l’esclave EtherCAT sur le réseau de la cifX configurée en EtherCAT Maitre et sélectionné les PDO en entrée et sortie pour un fonctionnement en boucle de vitesse.

Côté EtherCAT Maitre, dans la mémoire process de la carte Hilscher cifX donc, on retrouve les données d’entrée et sortie correspondantes :

Gem Drive Studio comme SYCON.net fonctionnent sous Microsoft Windows(R).

Cependant notre application va s’exécuter sous Linux avec les modifications PREEMPT_RT permettant d’obtenir un comportement temps réel.
Nous récupérerons donc les fichiers de firmware et de configuration pour les disposer dans l’arborescence du pilote cifX pour Linux.

Je travaille principalement sur des systèmes Debian et sur cet OS il existe un noyau Linux déjà compilé avec les patches PREEMPT_RT qui n’est donc qu’à une portée de clics ou d’une ligne de commande.
Cherchez « linux-image-rt » dans votre outil habituel et tant que vous y êtes installez également les en-têtes correspondants qui seront nécessaires pour la compilation du pilote Hilscher cifX qui n’est fourni que sous forme de code source.

Une fois installé, il suffit de redémarrer la machine en sélectionnant ce noyau.

Compilez ensuite le pilote comme expliqué dans la documentation relative. Ce pilote est en deux parties, l’une en espace noyau, uio_netx, qu’il vous faudra recompiler à chaque mise à jour du noyau, l’autre en espace utilisateur, la libcifx, qui est l’API pour votre application.

Voyez également la documentation pour l’utilisation du module si vous voulez vous passer de l’incantation en « root » :

modprobe -v uio_netx

Si tout ce passe bien, l’incantation fournit un résultat tel que :

On a disposé firmware et configuration dans le dossier idoine, par exemple :

Vous avez bien sûr installé « Ada for Automation », les dépendances et les outils pour le développement et vous avez navigué vers le répertoire contenant la démonstration « 122 ap7-wui ».
Un simple « make » doit vous permettre de générer l’application dont il est question dans cet article.

Cette application nécessite des droits spécifiques pour tourner avec des priorités temps réel.
Aussi il faut faire partie du groupe dédié ou être « root » pour pouvoir l’exécuter.

Cela démarre sur les chapeaux de roues en laissant une trace de ce style dans la console :

root@hf-test-2:/home/slos/Ada/A4A/demo/122 app7-wui# ./bin/App7_WUI_cifX
error
Log_Level = LEVEL_ERROR
2018-12-17 14:43:29.94 => A4A.Kernel.Sig_Handler : Waiting Signal Interrupt... Use Ctrl+C to exit
2018-12-17 14:43:29.94 => A4A.Kernel.Main_Task : Main_Task's ID is the_main_task_00005579443C2E50
Started at 2018-12-17 14:43:29.94
2018-12-17 14:43:29.94 => A4A.Generic_Periodic_Task : started !
2018-12-17 14:43:29.94 => A4A.Kernel.Main_Task : Initialising cifX Driver...
2018-12-17 14:43:31.61 => A4A.Kernel.Main_Task : Opening cifX Driver...
2018-12-17 14:43:31.61 => A4A.Kernel.Main_Task : Starting cifX TCP Server...
2018-12-17 14:43:31.61 => A4A.Kernel.Main_Task :
***********************************************
          Driver Information
Version     : cifX Toolkit 1.2.0.0
Board Count :  1
***********************************************

2018-12-17 14:43:31.61 => A4A.Kernel.Main_Task : Waiting for the firmware to start...
2018-12-17 14:43:36.61 => A4A.Kernel.Main_Task : Opening cifX Channel...
2018-12-17 14:43:36.61 => A4A.Kernel.Main_Task :
***********************************************
          Channel Information
Board_Name    : cifX0
Board Alias   : ECM
Device Number :  1250100
Serial Number :  20952

Firmware : EtherCAT Master
Version  :  4. 4. 9(Build  0)
Date     :  2018- 10- 10
***********************************************

2018-12-17 14:43:36.61 => A4A.Kernel.Main_Task : Setting Flag Host Ready...
2018-12-17 14:43:36.61 => A4A.Kernel.Main_Task : Setting Flag Bus On...
2018-12-17 14:43:38.61 => A4A.Kernel.Main_Task : (16#800C0021#)COM-flag not set
2018-12-17 14:43:38.61 => A4A.Kernel.Main_Task : Initialising Channel Messaging...
2018-12-17 14:43:38.61 => A4A.Kernel.Main_Task : Getting DPM IO Info...
2018-12-17 14:43:39.11 => A4A.Kernel.Main_Task :
***********************************************
          DPM IO_Info

Number of IO Block Info    :  2

Input Area :
Type of sub block    :  2
Flags                :  17
Offset               :  0
Length               :  10

Output Area :
Type of sub block    :  2
Flags                :  18
Offset               :  0
Length               :  6
***********************************************

2018-12-17 14:43:39.11 => A4A.Kernel.Main_Task : Calling Cold_Start...
2018-12-17 14:43:39.11 => A4A.Kernel.Main_Task : (16#800C0021#)COM-flag not set
Gnoga            :1.2b
Application root :/home/slos/Ada/A4A/demo/122 app7-wui/
Executable at    :/home/slos/Ada/A4A/demo/122 app7-wui/bin/
HTML root        :/home/slos/Ada/A4A/demo/122 app7-wui/html/
Upload directory :/home/slos/Ada/A4A/demo/122 app7-wui/html/
Templates root   :/home/slos/Ada/A4A/demo/122 app7-wui/
/js  at          :/home/slos/Ada/A4A/demo/122 app7-wui/js/
/css at          :/home/slos/Ada/A4A/demo/122 app7-wui/css/
/img at          :/home/slos/Ada/A4A/demo/122 app7-wui/img/
Boot file        :000-boot.html
HTTP listen on   ::8091
Press Ctrl-C to close server.
2018-12-17 14:43:39.96 : HTTP Server Started

Si je pointe mon navigateur sur l’adresse locale et le port choisi (:8091 cf. la trace), je peux piloter le variateur depuis le mot de contrôle et observer un signal en dent de scie sur la consigne et la mesure…

… tandis que je mate une vidéo de lapin…

… ce qui charge ma vieille CPU comme une bête …

Dans cette vue de « htop » on voit bien les priorités des processes de l’application temps réel, notamment les deux avec la priorité -89 sont les tâches « main » et « periodic », une priorité normale en FIFO étant à -50, -89 est une priorité plutôt haute donc.

C’est ce qui permet à ces tâches de se comporter honnêtement :

Ainsi, la tâche « main », cadencée à 1 ms, subit une fois sur mille un dépassement de son heure d’activation.

La vue d’état de la cifX montre des informations classiques…


… que je peux vérifier également depuis SYCON.net sur un autre poste :

Car « Ada for Automation » implémente « netX Diagnostic and Remote Access » comme déjà évoqué.

J’espère bien trouver un peu de temps pour mener d’autres expérimentations comme implémenter quelques fonctions de Motion Control

Cordialement,
Stéphane